Что такое диаметр?
Диаметр в изначальном значении – это отрезок, соединяющий две точки на окружности и проходящий через центр окружности, а также длина этого отрезка.
Диаметр равен двум радиусам: D = 2R.
Радиус (лат. radius – спица колеса, луч) – отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка. Радиус составляет половину диаметра.
Диаметр – это хорда (отрезок, соединяющий две точки на окружности (сфере, поверхности шара) и проходящий через центр этой окружности (сферы, шара). Также диаметром называют длину этого отрезка. Диаметр окружности является хордой, проходящей через центр этой окружности; такая хорда имеет максимальную длину.
В круге все диаметры равны и делят круг и все перпендикулярные хорды пополам. В эллипсе лишь два диаметра: самый большой и самый малый, перпендикулярные между собой, они делят эллипс пополам. В шаре, сфероиде, эллипсоиде и подобным геометрическим фигурам, диаметр = плоскость, проходит через центр и делит все перпендикулярные плоскости пополам.
Как же определить длину этого особого отрезка?
Как мы будем вычислять, зависит от того, что мы об этой самой окружности знаем. Предположим, нам известен её радиус… напомним: радиусом мы именуем отрезок, который соединяет точку в центре окружности с любой точкой, лежащей на её поверхности. Если мы проведём два таких радиуса, то часть окружности, которую мы таким образом «отсекли», будет называться сектором.
Так вот, нетрудно заметить, что располагающаяся в центре точка рассекает диаметр на два радиуса. Окружность же представляет собой совокупность точек, равно удалённых от заданной точки (центра), следовательно, радиусы – где бы мы их ни проводили, с какой бы из тачек окружности ни соединяли её центр – будут иметь одинаковую длину, и к двум радиусам, составляющим диаметр, это тоже относится. Таким образом, если нам известен радиус, остаётся только умножить его величину на два – вот вам и величина диаметра!
Несколько сложнее обстоит дело, если радиуса мы не знаем, но известен нам периметр окружности (проще говоря, её длина – то, что получится, если окружность «развернуть» и измерить. Тут в дело вступает величина совершенно особая – число пи. Число это иррациональное – т.е. представляет собой десятичную дробь, которая никогда не заканчивается, но при этом периодической она тоже не является. Но для удобства используют округлённое значение 3,14. Упоминания о некой константе, выражающей соотношение между длиной окружности и диаметром, мы находим уже у мудрецов Древнего Египта и Вавилона, внесли свой вклад в его вычисление и Архимед, и древнекитайские математики Чжан Хэн, Лю Хуэй и Цзу Чунжи, а греческой буквой пи его впервые обозначил английский математик Джонс в XVIII в. – той самой буквой, с которой начинается слово «периметр» и греческое слово, обозначающее окружность.
Соотношение выражается формулой P=2πR, т. е 2 умножить на число пи и на радиус. Но, поскольку мы знаем, что диаметр равен двум радиусам, можно сказать, что периметр равен произведению числа пи и диаметра. Следовательно, разделив периметр на число пи, получим диаметр.
Если же нам известна площадь круга, то удобнее всего сначала найти радиус. Напомним, площадь круга мы находим, умножая число пи на квадрат радиуса. Если мы площадь разделим на число пи, а потом извлечём корень квадратный из результата, это и будет радиус. Остаётся только умножить его на два – и мы получим диаметр.
Вычисление диаметра окружности из чертежа окружности
- Внутри окружности начертите горизонтальную прямую, проходящую от одной точки окружности к другой.Для этого воспользуйтесь линейкой или угольником. Прямая может проходить в верхней части круга, в нижней, или где-нибудь посередине.
- Пометьте точки, в которых прямая пересекает окружность, буквами «A» и «B.»
- Начертите две пересекающиеся окружности, одну – с центром в точке A, а другую – с центром в точке B.Убедитесь, что две окружности пересекаются так, будто образуют диаграмму Венна.
- Через две точки, в которых окружности пересеклись, проведите прямую.Отрезок этой прямой между двумя точками и будет равен диаметру окружности.
- Измерьте диаметр.Измерьте его с помощью линейки, а если нужна большая точность – штангенциркулем с цифровой индикацией. Готово!
Символ диаметра
Символ диаметра «Ø» (может не отображаться в некоторых браузерах) схож начертанием со строчной перечёркнутой буквой «o». В Юникоде он находится под десятичным номером 8960 или шестнадцатеричным номером 2300 (может быть введён в HTML-код как ⌀ или ⌀).
Символ диаметра не присутствует в стандартных раскладках, поэтому для его ввода при компьютерном наборе необходимо использовать вспомогательные средства, например, приложение «Таблица символов» в Windows, программу «Таблица символов Юникода» (gucharmap) в GNOME, команду «Вставка» → «Символ…» в программах Microsoft Office и т.д. Специализорованные программы могут предоставлять пользователю свои способы ввода этого символа: к примеру, в САПР AutoCAD для ввода символа диаметра используется сочетание символов %%c (буква c – латинская) или U+2205 в текстовой строке.
Во многих случаях символ диаметра может не отображаться, так как он редко включается в шрифты, например он присутствует в Arial Unicode MS (поставляется с Microsoft Office, при установке именуется «Универсальный шрифт»), DejaVu (свободный), Code2000 (условно-бесплатный) и некоторых других.
Допускается обозначать диаметр буквой D.
Следует отличать символ диаметра «Ø» от других похожих на него символов:
- «ø» – строчная перечёркнутая латинская буква O (используется в датском, норвежском и фарерском алфавитах);
- «∅» – символы пустого множества, в свою очередь похожие на «Ø» (заглавную перечёркнутую латинскую букву O) или на перечёркнутый ноль;
- «Φ» – греческая заглавная буква «фи», кириллическая буква «эф».
Понятие диаметра допускает естественные обобщения на некоторые другие геометрические объекты:
- Под диаметром конического сеченияпонимается прямая, проходящая через середины двух параллельных хорд.
- Под диаметром метрического пространствапонимается точная верхняя грань расстояний между парами его точек.
В частности:
- диаметр графа– это максимальное из расстояний между парами его вершин. Расстояние между вершинами определяется как наименьшее число рёбер, которые необходимо пройти, чтобы добраться из одной вершины в другую. Иначе говоря, это расстояние между двумя вершинами графа, максимально удаленными друг от друга;
- диаметр геометрической фигуры– максимальное расстояние между точками этой фигуры.
Диаметр в изначальном значении – это отрезок, соединяющий две точки на окружности и проходящий через центр окружности, а также длина этого отрезка.
Диаметр равен двум радиусам: D = 2R.
Радиус (лат. radius – спица колеса, луч) – отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка. Радиус составляет половину диаметра.
Диаметр – это хорда (отрезок, соединяющий две точки на окружности (сфере, поверхности шара) и проходящий через центр этой окружности (сферы, шара). Также диаметром называют длину этого отрезка. Диаметр окружности является хордой, проходящей через центр этой окружности; такая хорда имеет максимальную длину.
В круге все диаметры равны и делят круг и все перпендикулярные хорды пополам. В эллипсе лишь два диаметра: самый большой и самый малый, перпендикулярные между собой, они делят эллипс пополам. В шаре, сфероиде, эллипсоиде и подобным геометрическим фигурам, диаметр = плоскость, проходит через центр и делит все перпендикулярные плоскости пополам.
Как же определить длину этого особого отрезка?
Как мы будем вычислять, зависит от того, что мы об этой самой окружности знаем. Предположим, нам известен её радиус… напомним: радиусом мы именуем отрезок, который соединяет точку в центре окружности с любой точкой, лежащей на её поверхности. Если мы проведём два таких радиуса, то часть окружности, которую мы таким образом «отсекли», будет называться сектором.
Так вот, нетрудно заметить, что располагающаяся в центре точка рассекает диаметр на два радиуса. Окружность же представляет собой совокупность точек, равно удалённых от заданной точки (центра), следовательно, радиусы – где бы мы их ни проводили, с какой бы из тачек окружности ни соединяли её центр – будут иметь одинаковую длину, и к двум радиусам, составляющим диаметр, это тоже относится. Таким образом, если нам известен радиус, остаётся только умножить его величину на два – вот вам и величина диаметра!
Несколько сложнее обстоит дело, если радиуса мы не знаем, но известен нам периметр окружности (проще говоря, её длина – то, что получится, если окружность «развернуть» и измерить. Тут в дело вступает величина совершенно особая – число пи. Число это иррациональное – т.е. представляет собой десятичную дробь, которая никогда не заканчивается, но при этом периодической она тоже не является. Но для удобства используют округлённое значение 3,14. Упоминания о некой константе, выражающей соотношение между длиной окружности и диаметром, мы находим уже у мудрецов Древнего Египта и Вавилона, внесли свой вклад в его вычисление и Архимед, и древнекитайские математики Чжан Хэн, Лю Хуэй и Цзу Чунжи, а греческой буквой пи его впервые обозначил английский математик Джонс в XVIII в. – той самой буквой, с которой начинается слово «периметр» и греческое слово, обозначающее окружность.
Соотношение выражается формулой P=2πR, т. е 2 умножить на число пи и на радиус. Но, поскольку мы знаем, что диаметр равен двум радиусам, можно сказать, что периметр равен произведению числа пи и диаметра. Следовательно, разделив периметр на число пи, получим диаметр.
Если же нам известна площадь круга, то удобнее всего сначала найти радиус. Напомним, площадь круга мы находим, умножая число пи на квадрат радиуса. Если мы площадь разделим на число пи, а потом извлечём корень квадратный из результата, это и будет радиус. Остаётся только умножить его на два – и мы получим диаметр.
Вычисление диаметра окружности из чертежа окружности
- Внутри окружности начертите горизонтальную прямую, проходящую от одной точки окружности к другой.Для этого воспользуйтесь линейкой или угольником. Прямая может проходить в верхней части круга, в нижней, или где-нибудь посередине.
- Пометьте точки, в которых прямая пересекает окружность, буквами «A» и «B.»
- Начертите две пересекающиеся окружности, одну – с центром в точке A, а другую – с центром в точке B.Убедитесь, что две окружности пересекаются так, будто образуют диаграмму Венна.
- Через две точки, в которых окружности пересеклись, проведите прямую.Отрезок этой прямой между двумя точками и будет равен диаметру окружности.
- Измерьте диаметр.Измерьте его с помощью линейки, а если нужна большая точность – штангенциркулем с цифровой индикацией. Готово!
Символ диаметра
Символ диаметра «Ø» (может не отображаться в некоторых браузерах) схож начертанием со строчной перечёркнутой буквой «o». В Юникоде он находится под десятичным номером 8960 или шестнадцатеричным номером 2300 (может быть введён в HTML-код как ⌀ или ⌀).
Символ диаметра не присутствует в стандартных раскладках, поэтому для его ввода при компьютерном наборе необходимо использовать вспомогательные средства, например, приложение «Таблица символов» в Windows, программу «Таблица символов Юникода» (gucharmap) в GNOME, команду «Вставка» → «Символ…» в программах Microsoft Office и т.д. Специализорованные программы могут предоставлять пользователю свои способы ввода этого символа: к примеру, в САПР AutoCAD для ввода символа диаметра используется сочетание символов %%c (буква c – латинская) или U+2205 в текстовой строке.
Во многих случаях символ диаметра может не отображаться, так как он редко включается в шрифты, например он присутствует в Arial Unicode MS (поставляется с Microsoft Office, при установке именуется «Универсальный шрифт»), DejaVu (свободный), Code2000 (условно-бесплатный) и некоторых других.
Допускается обозначать диаметр буквой D.
Следует отличать символ диаметра «Ø» от других похожих на него символов:
- «ø» – строчная перечёркнутая латинская буква O (используется в датском, норвежском и фарерском алфавитах);
- «∅» – символы пустого множества, в свою очередь похожие на «Ø» (заглавную перечёркнутую латинскую букву O) или на перечёркнутый ноль;
- «Φ» – греческая заглавная буква «фи», кириллическая буква «эф».
Понятие диаметра допускает естественные обобщения на некоторые другие геометрические объекты:
- Под диаметром конического сеченияпонимается прямая, проходящая через середины двух параллельных хорд.
- Под диаметром метрического пространствапонимается точная верхняя грань расстояний между парами его точек.
В частности:
- диаметр графа– это максимальное из расстояний между парами его вершин. Расстояние между вершинами определяется как наименьшее число рёбер, которые необходимо пройти, чтобы добраться из одной вершины в другую. Иначе говоря, это расстояние между двумя вершинами графа, максимально удаленными друг от друга;
- диаметр геометрической фигуры– максимальное расстояние между точками этой фигуры.