Что такое тачскрин?
Содержание- Основа тачскрина
- Виды сенсорных экранов
- Резистивные сенсорные экраны
- Четырёхпроводной экран
- Пятипроводной экран
- Матричные сенсорные экраны
- Ёмкостные сенсорные экраны
- Проекционно-ёмкостные сенсорные экраны
- Сенсорные экраны на поверхностно-акустических волнах
- Инфракрасные сенсорные экраны
- Оптические сенсорные экраны
- Тензометрические сенсорные экраны
- Сенсорные экраны DST
Еще совсем недавно мало кто мог поверить в то, что телефоны с привычными кнопками уступят место устройствам, которые управляются с помощью прикосновения к экрану. Но времена меняются и спрос на кнопочные телефоны постепенно падает, а на смартфоны — растет.
Термин «тачскрин» образовался от двух слов — Touch и Screen, что в переводе с английского языка переводится как «сенсорный экран». Да, именно так — тачскрин и есть сенсорный экран, к которому вы прикасаетесь, когда пользуетесь своим смартфоном или планшетом. На деле же сенсорные экраны встречаются не только в мире мобильной техники. Так, вы могли видеть их при внесении средств на счет мобильного устройства через терминал, в банкомате, в билетных устройствах и т.д.
Своим появлением touch-screen обязан западным учёным. Самые первые образцы появились на свет во второй половине 60-ых годов прошлого века. На основании этого можно сделать вывод о том, что тачскрин используется вот уже более 40 лет. До появления смартфонов они использовались в банкоматах и т.д. В настоящий момент каждый человек, который пользуется сотовой связью, автомобильными навигаторами, посещает банки и магазины, сталкивается с данной технологией, порой даже не догадываясь о том, как она называется. Итак, мы разобрались в том, что такое тачскрин в телефонах. По сути, это то же самое, что и дисплей, реагирующий на касание пальцев. Он прекрасно используется вместо клавиатуры и активно применяется в мобильных технологиях. К достоинствам тачскрин можно отнести защиту от пыли, влаги и прочих неблагоприятных факторов окружающей среды, а также высокую степень надёжности. Если наше сенсорное устройство не всегда реагирует на касание, либо и вовсе отказывается это делать, к примеру, не желает менять яркость на iPad, скорее всего, из строя вышел именно touch-screen. Стоит он относительно недорого (особенно если нас интересует резистивный дисплей), и заменить его легко.
Основа тачскрина
Основа любого тачскрина — это матрица на жидких кристаллах, которая фактически является уменьшенной копией той, что находится в мониторе. На обратной стороне расположены диоды подсветки, а на лицевой — ряд слоев, которые фиксируют нажатие (резистивный экран) или прикосновение (емкостной экран).
Человек, который хорошо разбирается в том, что такое тачскрин, понимает, что большая часть произведенных устройств использует резистивный сенсорный экран. Это следует из их дешевизны и относительной простоты конструкции. Многие китайские «смартфоны», заполонившие рынок, имеют резистивный тип экрана, технология изготовления которого, кстати, появилась раньше, чем емкостная.
Виды сенсорных экранов
Сенсорные экраны подразделяются на резистивные, матричные, проекционно-ёмкостные, сенсорные экраны на поверхностно-акустических волнах, инфракрасные, оптическиие, тензометрические, сенсорные экраны DST и индукционные.
Резистивные сенсорные экраны
Подразделяются на четырехпроводные и пятипроводные.
Сенсор резистивного экрана состоит из двух прозрачных пластмассовых пластин с тонкой токопроводящей сеткой, которые находятся на поверхности обычного жидкокристаллического экрана. Между пластинами — прозрачный диэлектрический слой. Программа выводит графический интерактивный интерфейс, который благодаря прозрачным материалам на матрице хорошо видно. Отвечая на запрос программы, пользователь нажимает на нужную точку интерфейса (например, изображение кнопки). — Расходится пластичный диэлектрик расходится, соприкасаются пластмассовые пластины, подавая ток с электрода одной на сетку другой. Появление тока фиксируется регистрирующим контроллером, который в соответствии с сеткой координат определит точку нажатия. Координаты точки поступают в программу и обрабатываются по заложенным алгоритмам.
Четырёхпроводной экран
Резистивный сенсорный экран состоит из стеклянной панели и гибкой пластиковой мембраны. И на панель, и на мембрану нанесено резистивное покрытие. Пространство между стеклом и мембраной заполнено микро-изоляторами, которые равномерно распределены по активной области экрана и надёжно изолируют проводящие поверхности. Когда на экран нажимают, панель и мембрана замыкаются, и контроллер с помощью аналогово-цифрового преобразователя регистрирует изменение сопротивления и преобразует его в координаты прикосновения (X и Y). В общих чертах алгоритм считывания таков:
На верхний электрод подаётся напряжение +5В, нижний заземляется. Левый с правым соединяются накоротко, и проверяется напряжение на них. Это напряжение соответствует Y-координате экрана.
Аналогично на левый и правый электрод подаётся +5В и «земля», с верхнего и нижнего считывается X-координата.
Существуют также восьмипроводные сенсорные экраны. Они улучшают точность отслеживания, но не повышают надёжности.
Пятипроводной экран
Пятипроводной экран более надёжен за счёт того, что резистивное покрытие на мембране заменено проводящим (5-проводной экран продолжает работать даже с прорезанной мембраной). На заднем стекле нанесено резистивное покрытие с четырьмя электродами по углам.
Изначально все четыре электрода заземлены, а мембрана «подтянута» резистором к +5В. Уровень напряжения на мембране постоянно отслеживается аналогово-цифровым преобразователем. Когда ничто не касается сенсорного экрана, напряжение равно 5 В.
Как только на экран нажимают, микропроцессор улавливает изменение напряжения мембраны и начинает вычислять координаты касания следующим образом:
На два правых электрода подаётся напряжение +5В, левые заземляются. Напряжение на экране соответствует X-координате.
Y-координата считывается подключением к +5В обоих верхних электродов и к «земле» обоих нижних.
Резистивные сенсорные экраны дёшевы и стойки к загрязнению. Резистивные экраны реагируют на прикосновение любым гладким твёрдым предметом: рукой (голой или в перчатке), пером, кредитной картой, медиатором. Их используют везде, где вандализм и низкие температуры не исключены: для автоматизации промышленных процессов, в медицине, в сфере обслуживания (POS-терминалы), в персональной электронике (КПК). Лучшие образцы обеспечивают точность в 4096×4096 пикселей.
Недостатками резистивных экранов являются низкое светопропускание (не более 85% для 5-проводных моделей и ещё более низкое для 4-проводных), низкая долговечность (не более 35 млн нажатий в одну точку) и недостаточная вандалоустойчивость (плёнку легко разрезать).
Матричные сенсорные экраны
Конструкция аналогична резистивной, но упрощена до предела. На стекло нанесены горизонтальные проводники, на мембрану — вертикальные.
При прикосновении к экрану проводники соприкасаются. Контроллер определяет, какие проводники замкнулись, и передаёт в микропроцессор соответствующие координаты.
Имеют очень низкую точность. Элементы интерфейса приходится специально располагать с учётом клеток матричного экрана. Единственное достоинство — простота, дешевизна и неприхотливость. Обычно матричные экраны опрашиваются по строкам (аналогично матрице кнопок); это позволяет наладить мультитач. Постепенно заменяются резистивными.
Ёмкостные сенсорные экраны
Ёмкостный (или поверхностно-ёмкостный) экран использует тот факт, что предмет большой ёмкости проводит переменный ток.
Ёмкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом (обычно применяется сплав оксида индия и оксида олова). Электроды, расположенные по углам экрана, подают на проводящий слой небольшое переменное напряжение (одинаковое для всех углов). При касании экрана пальцем или другим проводящим предметом появляется утечка тока. При этом чем ближе палец к электроду, тем меньше сопротивление экрана, а значит, сила тока больше. Ток во всех четырёх углах регистрируется датчиками и передаётся в контроллер, вычисляющий координаты точки касания.
В более ранних моделях ёмкостных экранов применялся постоянный ток — это упрощало конструкцию, но при плохом контакте пользователя с землёй приводило к сбоям.
Ёмкостные сенсорные экраны надёжны, порядка 200 млн нажатий (около 6 с половиной лет нажатий с промежутком в одну секунду), не пропускают жидкости и отлично терпят токонепроводящие загрязнения. Прозрачность на уровне 90%. Впрочем, проводящее покрытие, расположенное прямо на внешней поверхности, всё ещё уязвимо. Поэтому ёмкостные экраны широко применяются в автоматах, лишь установленных в защищённом от непогоды помещении. Не реагируют на руку в перчатке.
Стоит заметить, что из-за различий в терминологии часто путают поверхностно- и проекционно-ёмкостные экраны. По классификации, применённой в данной статье, экран, например, iPhone является проекционно-ёмкостным, а не ёмкостным.
Проекционно-ёмкостные сенсорные экраны
На внутренней стороне экрана нанесена сетка электродов. Электрод вместе с телом человека образует конденсатор; электроника измеряет ёмкость этого конденсатора (подаёт импульс тока и измеряет напряжение).
Компания Samsung сумела установить чувствительные электроды прямо между субпикселями AMOLED-экрана, это упрощает конструкцию и повышает прозрачность.
Прозрачность таких экранов до 90 %, температурный диапазон чрезвычайно широк. Очень долговечны (узкое место — сложная электроника, обрабатывающая нажатия). На ПЁСЭ может применяться стекло толщиной вплоть до 18 мм[10], что приводит к крайней вандалоустойчивости. На непроводящие загрязнения не реагируют, проводящие легко подавляются программными методами. Поэтому проекционно-ёмкостные сенсорные экраны широко применяются и в персональной электронике, и в автоматах, в том числе установленных на улице. Многие разновидности поддерживают мультитач.
Сенсорные экраны на поверхностно-акустических волнах
Экран представляет собой стеклянную панель с пьезоэлектрическими преобразователями (ПЭП), находящимися по углам. По краям панели находятся отражающие и принимающие датчики. Принцип действия такого экрана заключается в следующем. Специальный контроллер формирует высокочастотный электрический сигнал и посылает его на ПЭП. ПЭП преобразует этот сигнал в ПАВ, а отражающие датчики его соответственно отражают.
Эти отражённые волны принимаются соответствующими датчиками и посылаются на ПЭП. ПЭП, в свою очередь, принимают отражённые волны и преобразовывают их в электрический сигнал, который затем анализируется с помощью контроллера. При касании экрана пальцем часть энергии акустических волн поглощается. Приёмники фиксируют это изменение, а микроконтроллер вычисляет положение точки касания. Реагирует на касание предметом, способным поглотить волну (палец, рука в перчатке, пористая резина).
Главным достоинством экрана на поверхностных акустических волнах (ПАВ) является возможность отслеживать не только координаты точки, но и силу нажатия (здесь, скорее, способность точно определять радиус или область нажатия), благодаря тому, что степень поглощения акустических волн зависит от величины давления в точке касания (экран не прогибается под нажатием пальца и не деформируется, поэтому сила нажатия не влечет за собой качественных изменений в обработке контроллером данных о координатах воздействия, который фиксирует только область, перекрывающую путь акустических импульсов).
Данное устройство имеет очень высокую прозрачность, так как свет от отображающего прибора проходит через стекло, не содержащее резистивных или проводящих покрытий. В некоторых случаях для борьбы с бликами стекло вообще не используется, а излучатели, приёмники и отражатели крепятся непосредственно к экрану отображающего устройства. Несмотря на сложность конструкции, эти экраны довольно долговечны. По заявлению, например, американской компании Tyco Electronics и тайваньской фирмы GeneralTouch, они выдерживают до 50 млн касаний в одной точке, что превышает ресурс 5-проводного резистивного экрана.
Экраны на ПАВ применяются, в основном, в игровых автоматах, в охраняемых справочных системах и образовательных учреждениях. Как правило, экраны ПАВ различают на обычные — толщиной 3 мм, и вандалостойкие — 6 мм. Последние выдерживают удар кулаком среднего мужчины или падение металлического шара весом 0.5 кг с высоты 1.3 метра (по данным Elo Touch Systems). На рынке предлагаются варианты подключения к компьютеру как через интерфейс RS232, так и через интерфейс USB. На данный момент большей популярностью пользуются контроллеры к сенсорным экранам ПАВ, поддерживающие и тот, и другой тип подключения — combo (данные Elo Touch Systems).
Главным недостатком экрана на ПАВ являются сбои в работе при наличии вибрации или при воздействии акустическими шумами, а также при загрязнении экрана. Любой посторонний предмет, размещённый на экране (например, жевательная резинка), полностью блокирует его работу. Кроме того, данная технология требует касания предметом, который обязательно поглощает акустические волны, — то есть, например, пластиковая банковская карточка в данном случае неприменима.
Точность этих экранов выше, чем матричных, но ниже, чем традиционных ёмкостных. Для рисования и ввода текста они, как правило, не используются.
Инфракрасные сенсорные экраны
Принцип работы инфракрасной сенсорной панели прост — сетка, сформированная горизонтальными и вертикальными инфракрасными лучами, прерывается при касании к монитору любым предметом. Контроллер определяет место, в котором луч был прерван.
Инфракрасные сенсорные экраны боятся загрязнений и поэтому применяются там, где важно качество изображения, например, в электронных книгах. Из-за простоты и ремонтопригодности схема популярна у военных. Часто на таком принципе делают клавиатуры домофонов. Данный тип экрана применяется в обильных телефонах компании Neonode.
Оптические сенсорные экраны
Стеклянная панель снабжена инфракрасной подсветкой. На границе «стекло-воздух» получается полное внутреннее отражение, на границе «стекло — посторонний предмет» свет рассеивается. Остаётся заснять картину рассеивания, для этого существуют две технологии:
В проекционных экранах рядом с проектором ставится камера.
Так устроен, например, Microsoft PixelSense.
Либо светочувствительным делают дополнительный четвёртый субпиксель ЖК-экрана.
Позволяют отличить нажатия рукой от нажатий какими-либо предметами, есть мультитач. Возможны большие сенсорные поверхности, вплоть до классной доски.
Тензометрические сенсорные экраны
Реагируют на деформацию экрана. Точность тензометрических экранов невелика, зато они отлично выдерживают вандализм. Основное применение — банкоматы, билетные автоматы и прочие устройства, расположенные на улице.
Сенсорные экраны DST
Сенсорный экран DST (Dispersive Signal Technology) регистрирует пьезоэлектрический эффект в стекле. Возможно нажатие на экран рукой или любым предметом.
Отличительной особенностью является высокая скорость реакции и возможность работы в условиях сильного загрязнения экрана. Однако палец должен двигаться, неподвижный палец система не замечает.
- Основа тачскрина
- Виды сенсорных экранов
- Резистивные сенсорные экраны
- Четырёхпроводной экран
- Пятипроводной экран
- Матричные сенсорные экраны
- Ёмкостные сенсорные экраны
- Проекционно-ёмкостные сенсорные экраны
- Сенсорные экраны на поверхностно-акустических волнах
- Инфракрасные сенсорные экраны
- Оптические сенсорные экраны
- Тензометрические сенсорные экраны
- Сенсорные экраны DST
Еще совсем недавно мало кто мог поверить в то, что телефоны с привычными кнопками уступят место устройствам, которые управляются с помощью прикосновения к экрану. Но времена меняются и спрос на кнопочные телефоны постепенно падает, а на смартфоны — растет.
Термин «тачскрин» образовался от двух слов — Touch и Screen, что в переводе с английского языка переводится как «сенсорный экран». Да, именно так — тачскрин и есть сенсорный экран, к которому вы прикасаетесь, когда пользуетесь своим смартфоном или планшетом. На деле же сенсорные экраны встречаются не только в мире мобильной техники. Так, вы могли видеть их при внесении средств на счет мобильного устройства через терминал, в банкомате, в билетных устройствах и т.д.
Своим появлением touch-screen обязан западным учёным. Самые первые образцы появились на свет во второй половине 60-ых годов прошлого века. На основании этого можно сделать вывод о том, что тачскрин используется вот уже более 40 лет. До появления смартфонов они использовались в банкоматах и т.д. В настоящий момент каждый человек, который пользуется сотовой связью, автомобильными навигаторами, посещает банки и магазины, сталкивается с данной технологией, порой даже не догадываясь о том, как она называется. Итак, мы разобрались в том, что такое тачскрин в телефонах. По сути, это то же самое, что и дисплей, реагирующий на касание пальцев. Он прекрасно используется вместо клавиатуры и активно применяется в мобильных технологиях. К достоинствам тачскрин можно отнести защиту от пыли, влаги и прочих неблагоприятных факторов окружающей среды, а также высокую степень надёжности. Если наше сенсорное устройство не всегда реагирует на касание, либо и вовсе отказывается это делать, к примеру, не желает менять яркость на iPad, скорее всего, из строя вышел именно touch-screen. Стоит он относительно недорого (особенно если нас интересует резистивный дисплей), и заменить его легко.
Основа тачскрина
Основа любого тачскрина — это матрица на жидких кристаллах, которая фактически является уменьшенной копией той, что находится в мониторе. На обратной стороне расположены диоды подсветки, а на лицевой — ряд слоев, которые фиксируют нажатие (резистивный экран) или прикосновение (емкостной экран).
Человек, который хорошо разбирается в том, что такое тачскрин, понимает, что большая часть произведенных устройств использует резистивный сенсорный экран. Это следует из их дешевизны и относительной простоты конструкции. Многие китайские «смартфоны», заполонившие рынок, имеют резистивный тип экрана, технология изготовления которого, кстати, появилась раньше, чем емкостная.
Виды сенсорных экранов
Сенсорные экраны подразделяются на резистивные, матричные, проекционно-ёмкостные, сенсорные экраны на поверхностно-акустических волнах, инфракрасные, оптическиие, тензометрические, сенсорные экраны DST и индукционные.
Резистивные сенсорные экраны
Подразделяются на четырехпроводные и пятипроводные.
Сенсор резистивного экрана состоит из двух прозрачных пластмассовых пластин с тонкой токопроводящей сеткой, которые находятся на поверхности обычного жидкокристаллического экрана. Между пластинами — прозрачный диэлектрический слой. Программа выводит графический интерактивный интерфейс, который благодаря прозрачным материалам на матрице хорошо видно. Отвечая на запрос программы, пользователь нажимает на нужную точку интерфейса (например, изображение кнопки). — Расходится пластичный диэлектрик расходится, соприкасаются пластмассовые пластины, подавая ток с электрода одной на сетку другой. Появление тока фиксируется регистрирующим контроллером, который в соответствии с сеткой координат определит точку нажатия. Координаты точки поступают в программу и обрабатываются по заложенным алгоритмам.
Четырёхпроводной экран
Резистивный сенсорный экран состоит из стеклянной панели и гибкой пластиковой мембраны. И на панель, и на мембрану нанесено резистивное покрытие. Пространство между стеклом и мембраной заполнено микро-изоляторами, которые равномерно распределены по активной области экрана и надёжно изолируют проводящие поверхности. Когда на экран нажимают, панель и мембрана замыкаются, и контроллер с помощью аналогово-цифрового преобразователя регистрирует изменение сопротивления и преобразует его в координаты прикосновения (X и Y). В общих чертах алгоритм считывания таков:
На верхний электрод подаётся напряжение +5В, нижний заземляется. Левый с правым соединяются накоротко, и проверяется напряжение на них. Это напряжение соответствует Y-координате экрана.
Аналогично на левый и правый электрод подаётся +5В и «земля», с верхнего и нижнего считывается X-координата.
Существуют также восьмипроводные сенсорные экраны. Они улучшают точность отслеживания, но не повышают надёжности.
Пятипроводной экран
Пятипроводной экран более надёжен за счёт того, что резистивное покрытие на мембране заменено проводящим (5-проводной экран продолжает работать даже с прорезанной мембраной). На заднем стекле нанесено резистивное покрытие с четырьмя электродами по углам.
Изначально все четыре электрода заземлены, а мембрана «подтянута» резистором к +5В. Уровень напряжения на мембране постоянно отслеживается аналогово-цифровым преобразователем. Когда ничто не касается сенсорного экрана, напряжение равно 5 В.
Как только на экран нажимают, микропроцессор улавливает изменение напряжения мембраны и начинает вычислять координаты касания следующим образом:
На два правых электрода подаётся напряжение +5В, левые заземляются. Напряжение на экране соответствует X-координате.
Y-координата считывается подключением к +5В обоих верхних электродов и к «земле» обоих нижних.
Резистивные сенсорные экраны дёшевы и стойки к загрязнению. Резистивные экраны реагируют на прикосновение любым гладким твёрдым предметом: рукой (голой или в перчатке), пером, кредитной картой, медиатором. Их используют везде, где вандализм и низкие температуры не исключены: для автоматизации промышленных процессов, в медицине, в сфере обслуживания (POS-терминалы), в персональной электронике (КПК). Лучшие образцы обеспечивают точность в 4096×4096 пикселей.
Недостатками резистивных экранов являются низкое светопропускание (не более 85% для 5-проводных моделей и ещё более низкое для 4-проводных), низкая долговечность (не более 35 млн нажатий в одну точку) и недостаточная вандалоустойчивость (плёнку легко разрезать).
Матричные сенсорные экраны
Конструкция аналогична резистивной, но упрощена до предела. На стекло нанесены горизонтальные проводники, на мембрану — вертикальные.
При прикосновении к экрану проводники соприкасаются. Контроллер определяет, какие проводники замкнулись, и передаёт в микропроцессор соответствующие координаты.
Имеют очень низкую точность. Элементы интерфейса приходится специально располагать с учётом клеток матричного экрана. Единственное достоинство — простота, дешевизна и неприхотливость. Обычно матричные экраны опрашиваются по строкам (аналогично матрице кнопок); это позволяет наладить мультитач. Постепенно заменяются резистивными.
Ёмкостные сенсорные экраны
Ёмкостный (или поверхностно-ёмкостный) экран использует тот факт, что предмет большой ёмкости проводит переменный ток.
Ёмкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом (обычно применяется сплав оксида индия и оксида олова). Электроды, расположенные по углам экрана, подают на проводящий слой небольшое переменное напряжение (одинаковое для всех углов). При касании экрана пальцем или другим проводящим предметом появляется утечка тока. При этом чем ближе палец к электроду, тем меньше сопротивление экрана, а значит, сила тока больше. Ток во всех четырёх углах регистрируется датчиками и передаётся в контроллер, вычисляющий координаты точки касания.
В более ранних моделях ёмкостных экранов применялся постоянный ток — это упрощало конструкцию, но при плохом контакте пользователя с землёй приводило к сбоям.
Ёмкостные сенсорные экраны надёжны, порядка 200 млн нажатий (около 6 с половиной лет нажатий с промежутком в одну секунду), не пропускают жидкости и отлично терпят токонепроводящие загрязнения. Прозрачность на уровне 90%. Впрочем, проводящее покрытие, расположенное прямо на внешней поверхности, всё ещё уязвимо. Поэтому ёмкостные экраны широко применяются в автоматах, лишь установленных в защищённом от непогоды помещении. Не реагируют на руку в перчатке.
Стоит заметить, что из-за различий в терминологии часто путают поверхностно- и проекционно-ёмкостные экраны. По классификации, применённой в данной статье, экран, например, iPhone является проекционно-ёмкостным, а не ёмкостным.
Проекционно-ёмкостные сенсорные экраны
На внутренней стороне экрана нанесена сетка электродов. Электрод вместе с телом человека образует конденсатор; электроника измеряет ёмкость этого конденсатора (подаёт импульс тока и измеряет напряжение).
Компания Samsung сумела установить чувствительные электроды прямо между субпикселями AMOLED-экрана, это упрощает конструкцию и повышает прозрачность.
Прозрачность таких экранов до 90 %, температурный диапазон чрезвычайно широк. Очень долговечны (узкое место — сложная электроника, обрабатывающая нажатия). На ПЁСЭ может применяться стекло толщиной вплоть до 18 мм[10], что приводит к крайней вандалоустойчивости. На непроводящие загрязнения не реагируют, проводящие легко подавляются программными методами. Поэтому проекционно-ёмкостные сенсорные экраны широко применяются и в персональной электронике, и в автоматах, в том числе установленных на улице. Многие разновидности поддерживают мультитач.
Сенсорные экраны на поверхностно-акустических волнах
Экран представляет собой стеклянную панель с пьезоэлектрическими преобразователями (ПЭП), находящимися по углам. По краям панели находятся отражающие и принимающие датчики. Принцип действия такого экрана заключается в следующем. Специальный контроллер формирует высокочастотный электрический сигнал и посылает его на ПЭП. ПЭП преобразует этот сигнал в ПАВ, а отражающие датчики его соответственно отражают.
Эти отражённые волны принимаются соответствующими датчиками и посылаются на ПЭП. ПЭП, в свою очередь, принимают отражённые волны и преобразовывают их в электрический сигнал, который затем анализируется с помощью контроллера. При касании экрана пальцем часть энергии акустических волн поглощается. Приёмники фиксируют это изменение, а микроконтроллер вычисляет положение точки касания. Реагирует на касание предметом, способным поглотить волну (палец, рука в перчатке, пористая резина).
Главным достоинством экрана на поверхностных акустических волнах (ПАВ) является возможность отслеживать не только координаты точки, но и силу нажатия (здесь, скорее, способность точно определять радиус или область нажатия), благодаря тому, что степень поглощения акустических волн зависит от величины давления в точке касания (экран не прогибается под нажатием пальца и не деформируется, поэтому сила нажатия не влечет за собой качественных изменений в обработке контроллером данных о координатах воздействия, который фиксирует только область, перекрывающую путь акустических импульсов).
Данное устройство имеет очень высокую прозрачность, так как свет от отображающего прибора проходит через стекло, не содержащее резистивных или проводящих покрытий. В некоторых случаях для борьбы с бликами стекло вообще не используется, а излучатели, приёмники и отражатели крепятся непосредственно к экрану отображающего устройства. Несмотря на сложность конструкции, эти экраны довольно долговечны. По заявлению, например, американской компании Tyco Electronics и тайваньской фирмы GeneralTouch, они выдерживают до 50 млн касаний в одной точке, что превышает ресурс 5-проводного резистивного экрана.
Экраны на ПАВ применяются, в основном, в игровых автоматах, в охраняемых справочных системах и образовательных учреждениях. Как правило, экраны ПАВ различают на обычные — толщиной 3 мм, и вандалостойкие — 6 мм. Последние выдерживают удар кулаком среднего мужчины или падение металлического шара весом 0.5 кг с высоты 1.3 метра (по данным Elo Touch Systems). На рынке предлагаются варианты подключения к компьютеру как через интерфейс RS232, так и через интерфейс USB. На данный момент большей популярностью пользуются контроллеры к сенсорным экранам ПАВ, поддерживающие и тот, и другой тип подключения — combo (данные Elo Touch Systems).
Главным недостатком экрана на ПАВ являются сбои в работе при наличии вибрации или при воздействии акустическими шумами, а также при загрязнении экрана. Любой посторонний предмет, размещённый на экране (например, жевательная резинка), полностью блокирует его работу. Кроме того, данная технология требует касания предметом, который обязательно поглощает акустические волны, — то есть, например, пластиковая банковская карточка в данном случае неприменима.
Точность этих экранов выше, чем матричных, но ниже, чем традиционных ёмкостных. Для рисования и ввода текста они, как правило, не используются.
Инфракрасные сенсорные экраны
Принцип работы инфракрасной сенсорной панели прост — сетка, сформированная горизонтальными и вертикальными инфракрасными лучами, прерывается при касании к монитору любым предметом. Контроллер определяет место, в котором луч был прерван.
Инфракрасные сенсорные экраны боятся загрязнений и поэтому применяются там, где важно качество изображения, например, в электронных книгах. Из-за простоты и ремонтопригодности схема популярна у военных. Часто на таком принципе делают клавиатуры домофонов. Данный тип экрана применяется в обильных телефонах компании Neonode.
Оптические сенсорные экраны
Стеклянная панель снабжена инфракрасной подсветкой. На границе «стекло-воздух» получается полное внутреннее отражение, на границе «стекло — посторонний предмет» свет рассеивается. Остаётся заснять картину рассеивания, для этого существуют две технологии:
В проекционных экранах рядом с проектором ставится камера.
Так устроен, например, Microsoft PixelSense.
Либо светочувствительным делают дополнительный четвёртый субпиксель ЖК-экрана.
Позволяют отличить нажатия рукой от нажатий какими-либо предметами, есть мультитач. Возможны большие сенсорные поверхности, вплоть до классной доски.
Тензометрические сенсорные экраны
Реагируют на деформацию экрана. Точность тензометрических экранов невелика, зато они отлично выдерживают вандализм. Основное применение — банкоматы, билетные автоматы и прочие устройства, расположенные на улице.
Сенсорные экраны DST
Сенсорный экран DST (Dispersive Signal Technology) регистрирует пьезоэлектрический эффект в стекле. Возможно нажатие на экран рукой или любым предметом.
Отличительной особенностью является высокая скорость реакции и возможность работы в условиях сильного загрязнения экрана. Однако палец должен двигаться, неподвижный палец система не замечает.